Penerapan Algoritma Spport Vector Machine dan K-Nearest Neighbor Menggunkan Feature Selection Backward Elimination Untuk Prediksi Status Penderita Stunting Pada Balita
DOI:
https://doi.org/10.51158/tecnoscienza.v6i2.713Keywords:
prediksi;, penderita stunting, SVM, K-NN, backward eliminationAbstract
Stunting adalah malnutrisi yang ditandai dengan tinggi badan, diukur dengan standar deviasi dari WHO. Dinas Kesehatan Provinsi Gorontalo khususnya dibidang Gizi mengenai stunting, selama ini melakukan kegiatan pemantauan tiap-tiap puskesmas dan posyandu. Pemantauan dan pendataan terkait stunting di berbagai puskesmas di wilayah Gorontalo merupakan faktor penting dalam menentukan faktor tumbuh kembang baik dalam kandungan maupun bayi yang dilahirkan. Masalah yang sering muncul adalah data yang dikumpulkan untuk underestimasi selalu tidak akurat setiap bulannya, karena hanya perkiraan yang dihitung berdasarkan kasus Puskesmas. Prediksi yang akurat diperlukan untuk mengatasi permasalahan yang ada. Data mining didefinisikan sebagai ekstraksi informasi berharga atau berguna dari industri pertambangan atau database yang sangat besar. Penelitian ini menggunakan algoritma K-Nearest Neighbor (K-NN) dan Support Vector Machine (SVM) menggunakan feature selection backward elimination. Berdasarkan hasil eksperimen, diprediksi jumlah penderita stunting menggunakan algoritma Support Vector Machine (SVM), dan k-Nearest Neighbor (K-NN) menggunakan Backward Elimination (BE). Tingkat error terkecil hasil RMSE 2,476 pada algoritma k-nearest neighbor. Adapun perbandingan antara hasil prediksi jumlah penderita stunting dibulan januari yaitu 23 orang dengan data aktual jumlah penderita stunting yakni 26 orang. Hasil prediksi menghasilkan nilai keakuratan 88,46%.