

Yulina Lailatul Maslukhah^{1*}, Nundiah Zuhrohfi Immaroh²

Program Studi Teknologi Pangan, Fakultas Teknologi dan Sains, Universitas PGRI Wiranegara, Kota Pasuruan, Indonesia Email: anna.yulina17@gmail.com¹, nundiahzi@gmail.com²

Abstrak

Fruit leather (lembaran buah) merupakan produk olahan buah yang dikeringkan dan dibentuk menjadi lembaran tipis yang mudah dibentuk. Penelitian mengenai pengolahan lembaran buah telah banyak dilakukan, mulai dari konsentrasi hingga jenis hidrokoloid yang digunakan. Dalam pembuatan fruit leather, hidrokoloid berperan sebagai bahan tambahan untuk meningkatkan mutu produk. Berbagai penelitian menunjukkan bahwa penambahan jenis hidrokoloid memberikan pengaruh bervariasi terhadap karakteristik fisik dan sensori lembaran buah, namun belum ada kajian pustaka yang secara khusus membahas pengaruhnya terhadap mutu. Kajian ini bertujuan mengetahui pengaruh jenis hidrokoloid terhadap karakteristik tekstur fruit leather secara fisik dan sensori menggunakan metode literature review dari artikel jurnal tahun 2020–2024. Urgensi kajian ini adalah mengidentifikasi kesenjangan penggunaan hidrokoloid terhadap mutu lembaran buah untuk pengembangan penelitian lanjutan. Beberapa hidrokoloid umum digunakan, antara lain karagenan, CMC, agar-agar, gum arab, gellan gum, guar gum, xanthan gum, pektin, dan dekstrin. Hasil kajian menunjukkan semakin tinggi konsentrasi hidrokoloid, nilai tekstur fisik seperti kuat tarik, hardness, springness, cohesiveness, dan gumminess meningkat, namun tingkat kesukaan panelis menurun. Setiap hidrokoloid memiliki konsentrasi optimum untuk menghasilkan fruit leather dengan karakteristik fisik dan organoleptik yang dapat diterima.

Kata kunci: Fisik; Hidrokoloid; Lembaran Buah; Sensori; Tekstur

ABSTRACT

Fruit leather is a dried fruit product that is processed and formed into thin, flexible sheets. Research on fruit leather processing has been extensively conducted, covering aspects such as concentration and types of hydrocolloids used. In the production of fruit leather, hydrocolloids serve as additives that enhance product quality. Various studies have shown that the addition of different types of hydrocolloids produces diverse effects on the physical and sensory characteristics of fruit leather; however, there has been no specific literature review discussing their influence on quality. This study aims to determine the effect of hydrocolloid types on the physical and sensory texture characteristics of fruit leather using a literature review method based on journal articles published between 2020 and 2024. The urgency of this review is to identify the research gap in the use of hydrocolloids in relation to fruit leather quality for future research development. Commonly used hydrocolloids include carrageenan, CMC, agar, gum arabic, gellan gum, guar gum, xanthan gum, pectin, and dextrin. The results of the review indicate that increasing hydrocolloid concentration enhances physical texture values such as tensile strength, hardness, springiness, cohesiveness, and gumminess, but decreases panelists' preference levels. Each hydrocolloid has an optimum concentration that produces fruit leather with acceptable physical and organoleptic characteristics.

Keywords: Physical; Hydrocolloids; Fruit leather; Sensory; Texture

1. PENDAHULUAN

Fruit leather umumnya dikenal sebagai buah kering, merupakan salah satu jenis produk olahan dalam kategori makanan ringan yang memiliki nilai gizi tinggi dan daya tarik yang khas.. Fruit leather yang baik, memiliki tekstur mudah dibentuk, elastisitas baik, dan tidak mudah patah atau sobek (Kurniadi et al., 2022). Bahan baku yang umumnya digunakan dalam pembuatan fruit leather menggunakan berbagai macam jenis buah-buahan tropis maupun subtropis. Beberapa jenis buah yang dapat digunakan sebagai bahan baku fruit leather antara lain nangka (Kurniarianti et al., 2024), kiwi (Barman et al., 2021), kenitu (Herlina et al., 2020), jambu air (Mardiyana et al., 2022), jambu kristal dan bit (Yahya et al., 2022), apel (Putri et al., 2022), campuran acai, pisang, kacang, dan sirup jambu biji (Santos et al., 2021), belimbing dan jambu biji merah (Fachriah & Rahmawati, 2022), jambu biji dengan pisang (Kurniadi et al., 2022), serta buah naga (Raj & Dash, 2022). Masing-masing buah memiliki sifat khas yang berbeda yang bisa memengaruhi karakteristik dari fruit leather seperti kandungan pektin yang terdapat pada kulit buah naga berperan dalam membentuk tekstur dan juga elastisitasnya

Hidrokoloid, komponen polimer yang berasal komponen alami ataupun sintetik yang mengandung gugus hidroksil. Komponen polimer dapat larut dalam air, dapat membentuk gel dari suatu larutan. Karakteristik dari hidrokoloid dapat digunakan sebagai pembentuk gel, emulsifier, penstabil dan pembentuk film (Kurniadi et al., 2022). Beberapa jenis hidrokoloid yang umum digunakan antara lain karagenan (Kurniadi et al., 2022), CMC (Mardiyana et al., 2022; Herlina et al., 2020), dekstrin (Yahya et al., 2022), gum arab (Fachriah & Rahmawati, 2022), xanthan gum, guar gum, pektin (Barman et al., 2021), gellan gum dan agar-agar (Santos et al., 2021); (Kurniarianti et al., 2024). Hidrokoloid dapat digunakan sebagai bahan tambahan pada produk pangan untuk meningkatkan mutu atau karakteristik fisik produk *fruit leather*. Pemilihan jenis hidrokoloid dan juga bahan baku perlu dikaji secara mendalam karena berpengaruh terhadap karakteristik fisik dan juga sensori dari *fruit leather*.

Penelitian terkait pengolahan lembaran buah sudah banyak dilakukan, mulai dari konsentrasi hidrokoloid yang digunakan hingga berbagai jenis hidrokoloid. Dalam pembuatan *fruit leather*, hidrokoloid sering digunakan sebagai bahan tambahan untuk meningkatkan mutu produk. Hasil penelitian dari berbagai artikel menunjukkan adanya pengaruh yang bervariasi dengan adanya penambahan berbagai jenis hidrokoloid terhadap karakteristik lembaran buah, diantaranya karakteristik fisik dan sensorinya, namun belum ada yang mengkaji dalam bentuk kajian pustaka terkait berbagai jenis hidrokoloid yang sering ditambahkan dalam pembuatan lembaran buah dan pengaruhnya terhadap mutu secara fisik dan sensori. Urgensi dari kajian ini

adalah mengidentifikasi kesenjangan penggunakan berbagai jenis hidrokoloid terhadap mutu lembaran buah secara fisik dan sensori, sehingga melalui kajian ini dapat dimanfaatkan untuk pengembangan penelitian tentang eksplorasi berbagai jenis hidrokoloid lain yang masih perlu dirksplorasi dalam penelitian lanjutan yang lebih komprehensif. Oleh karena itu, kajian ini bertujuan untuk memberikan gambaran mengenai pemilihan jenis hidrokoloid yang sesuai untuk diaplikasikan pada produk *fruit leather* yang diinginkan.

2. METODE

Kajian ini menggunakan metode kajian pustaka atau *literature review* untuk melakukan tinjauan secara menyeluruh terhadap penelitian yang telah dilakukan pada suatu topik tertentu dalam kaitannya dengan analisis pengetahuan sekunder yang eksplisit. Metode ini juga bertujuan untuk menunjukkan apa yang telah diketahui tentang topik tersebut (Peters et al., 2021). Kajian literatur dilakukan dengan menelaah beberapa artikel ilmiah dari rentang tahun 2020 hingga 2024 yang berkaitan dengan topik penelitian ini.

Adapun buah-buahan yang dapat digunakan sebagai bahan dasar pembuatan *fruit leather* yaitu nangka, belimbing wuluh dengan campuran jambu air merah, jambu biji dengan campuran pisang, kenitu, jambu air camplong putih, jambu kristal dengan penambahan bit, kiwi, buah naga, serta campuran *acai pulp*, pisang, kacang, dan sirup jambu biji digunakan untuk meningkatkan warna, cita rasa, serta kandungan gizi pada produk *fruit leather*. Adapun beberapa hidrokoloid yang ditambahkan pada berbagai jenis buah-buahan tersebut antara lain tepung agar, gum arab, karagenan, CMC, dekstrin, xanthan gum, guar gum, pektin, gellan gum, campuran agar dan gellan gum.

3. HASIL DAN PEMBAHASAN

3.1 Pengaruh Berbagai Koloid Terhadap Tekstur

Salah satu karakteristik penting yang menentukan kualitas *fruit leather* adalah teksturnya. Krakteristik *fruit leather* yang baik mempunyai tekstur yang plastis sehingga dapat digulung dan tidak mudah patah (Barman et al., 2021). Tekstur *fruit leather* dapat dianalisis menggunakan *tensile strength* yang menunjukkan kuat tarik dari *fruit leather*. Kuat tarik dapat didefinisikan sebagai nilai gaya yang diperlukan untuk menarik benda hingga mencapai kondisi benda tersebut dapat patah. Komponen penyusun *fruit leather* yang dapat memengaruhi tekstur *fruit leather* seperti jenis buah, konsentrasi atau perbandingan bahan baku, bahan tambahan pembentuk gel, proses pengolahan serta berbagai jenis hidrokoloid yang digunakan.

Parameter tektur yang diukur secara fisik dapat dilihat dari nilai kuat tarik, hardness, springness (kekenyalan), gumminess (kekenyalan), cohesiveness (keterpaduan), chewiness (kekenyalan), elongasi, rupture strength (daya patah), dan adhesiveness (daya rekat). Pengukuran kuat tarik bertujuan untuk mengetahui besarnya gaya tarik maksimum pada setiap satuan luas bahan yang ditarik hingga putus. Fruit leather dengan kekuatan tarik yang tinggi memiliki ketahanan terhadap gaya tarik yang lebih baik sehingga produk fruit leather tidak akan mudah sobek dan putus (Fachriah & Rahmawati, 2022). Adhesiveness (daya rekat) merupakan parameter penting dari produk buah kering karena dapat menunjukkan kelengketan produk tersebut (Barman et al., 2021). Pembentukan tekstur fruit leather dapat disebabkan oleh kemampuan penggunaan hidokoloid. Setiap hidrokoloid mempunyai karakteristik yang berbeda-beda sehingga dapat memengaruhi pembentukan tekstur fruit leather yang berbeda.

Beberapa hasil penelitian *fruit leather* terdahulu dari berbagai jenis buah yang berbeda dan dengan penambahan berbagai jenis hidrokoloid yang berbeda pada konsentrasi yang berbeda pula dapat dilihat pada Tabel 1. Nilai tekstur *fruit leather* yang dihasilkan sangat beragam. Secara umum, penambahan hidrokoloid dapat meningkatkan nilai tekstur *fruit leather* dengan semakin besar konsentrasi hidrokoloid yang digunakan (Tabel 1). Adapun hasil kombinasi berbagai buah-buahan dengan berbagai jenis hidrokoloid dari hasil studi literatur adalah sebagai berikut.

3.1.1 Fruit Leather Nangka dengan Penambahan Tepung Agar

Tepung agar deangan konsentrasi 0,5% - 2,0% memberikan pengaruh yang nyata terhadap karakteristik tekstur *fruit leather* nangka yang dihasilkan. Karakteristik tekstur yang diukur meliputi hardness (kekerasan), cohesiveness (kepaduan), springiness (kekenyalan), gumminess (kekenyalan), chewiness (kekenyalan), adhesiveness, dan hasil uji hedonik. Penambahan tepung agar dengan konsentrasi 0,5% dapat meningkatkan tekstur fruit leather nangka yaitu dengan karakteristik hardness (kekerasan) sebesar 60,18 kgf, cohesiveness (kepaduan) sebesar 0,09, springiness (kekenyalan) sebesar 8,90 mm, gumminess (kekenyalan) sebesar 19,63 kgf, chewiness (kekenyalan) sebesar 1,49 kgf.mm., adhesiveness sebesar 0,09 kgf.mm, dan hasil uji hedonik tekstur memiliki rata rata 4,25. Penambahan tepung agar pada rentang konsentrasi tersebut berpengaruh nyata terhadap karakteristik fruit leather nangka yaitu parameter kekerasan, kekenyalan, dan keterpaduannya (Kurniarianti et al., 2024).

3.1.2 Fruit Leather Belimbing-Jambu Air Merah dengan Penambahan Gum Arab

Kuat tarik *fruit leather* belimbing dan jambu air merah dengan penambahan gum arab 0%, 0,5%, 1%, 2%, dan 2,5% secara signifikan berbeda nyata pada taraf signifikansi 0,05.

Semakin besar konsentrasi gum arab yang ditambahkan maka tingkat ketahanan tarik dari *fruit leather* belimbing-jambu air merah menjadi semakin tinggi yaitu dengan rentang 294,12 ± 29,35 gf sampai 553,75 ± 80,27 gf. Pembentukan gel dapat dipengaruhi oleh campuran pektin, gula, asam, dan air. Gum arab berperan sebagai pembentuk gel. Pembentukan gel merupakan proses pengikatan silang rantai polimer sehingga membentuk jaringan tiga dimensi yang berkesinambungan dan mampu mengikat cairan sehingga membentuk tekstur yang kaku dan kuat. Hal ini menyebabkan kulit buah sulit dipatahkan karena memerlukan energi yang besar untuk memutuskan ikatan silang tersebut. Struktur kulit buah yang semakin padat memerlukan energi yang lebih besar untuk memecah kulit buah agar dapat ditelan. Dengan demikian, semakin tinggi konsentrasi gum arab maka nilai kuat tarik kulit buah belimbing-jambu biji merah semakin tinggi(Fachriah & Rahmawati, 2022). Setiap formulasi dengan penambahan konsentrasi gum arab yang semakin besar menunjukkan semakin besar pula nilai kuat tarik *fruit leather* belimbing-jambu biji merah.

3.1.3 Fruit Leather Jambu Biji-Pisang dengan Penambahan Kappa Karagenan dan Gum Arab

Fruit leather ini merupakan campuran dari puree jambu biji, puree pisang, sorbitol, kappa-karagenan, gum arab, dan air yang diformulasikan dalam formulasi yang bervariasi. Hasil penelitian (Kurniadi et al., 2022) bahwa penambahan hidrokolid kappa karagenan maupun gum arab secara signifikan berpengaruh dan berbeda nyata terhadap nilai kuat tarik fruit leather yang dihasilkan. Penambahan kappa-karagenan hidrokoloid 0,3% pad fruit leather ini secara signifikan meningkatkan kekuatan tarik fruit leather jambu biji-pisang (p < 0,05) pada semua formulasi (jambu biji: pisang; 50:50; 40:60; 30:70). Fruit leather yang mengandung kappa-karagenan memiliki kekuatan tarik antara 2,34 dan 3,72 Newton, dengan rata-rata 3,12 Newton. Namun, kekuatan tarik gum Arab hanya berkisar antara 1,63 hingga 1,84 Newton, dengan rata-rata hanya 1,74 Newton (Kurniadi et al., 2022). Dari tiga formulasi perbandingan jambu biji dengan pisang rata-rata penambahan hidrokoloid kappa karagenan mempunyai nilai kuat tarik yang lebih tinggi dibandingkan dengan penambahan gum arab di ketiga formula puree buah jambu biji dan pisang.

3.1.4 Fruit Leather Kenitu dengan Penambahan Karagenan

Jenis dan konsentrasi bahan pengikat memberikan pengaruh signifikan terhadap tekstur *fruit leather* kenitu, sedangkan interaksi antara keduanya tidak menunjukkan pengaruh yang nyata. Penambahan karagenan menghasilkan tekstur *fruit leather* kenitu yang lebih lunak dibandingkan dengan penambahan CMC, yang diduga berkaitan dengan perbedaan kandungan

serat pada kedua bahan pengikat tersebut. Kandungan serat yang lebih tinggi mampu meningkatkan daya serap air, karena serat mengandung gugus hidroksil bebas yang bersifat polar. Konsentrasi bahan pengikat yang semakin tinggi, maka tekstur *fruit leather* kenitu menjadi semakin lunak akibat bertambahnya jumlah air yang terikat dalam matriks hidrokoloid (Herlina et al., 2020). Selain itu, peningkatan konsentrasi bahan pengikat juga berkontribusi pada kenaikan nilai kuat tarik *fruit leather* buah kenitu.

3.1.5 Fruit Leather Jambu Air Camplong Putih dengan Penambahan CMC

Nilai tensile strength atau daya tarik pada fruit leather jambu air camplong putih berada pada kisaran 0,210–0,375 MPa. Peningkatan konsentrasi CMC dalam proses pembuatan produk ini berbanding lurus dengan kenaikan nilai tensile strength. Parameter tensile strength berkaitan erat dengan tekstur fruit leather yang bersifat plastis, di mana sifat plastis tersebut terbentuk akibat penambahan gelling agent(Kurniadi et al., 2022). CMC sendiri merupakan salah satu jenis gelling agent yang efektif digunakan(Forestryana et al., 2020). Dengan demikian, semakin tinggi konsentrasi CMC yang ditambahkan, semakin besar pula nilai tensile strength fruit leather jambu air camplong putih(Mardiyana et al., 2022).

3.1.6 Fruit Leather Jambu Kristal dan Ekstrak Bit dengan Penambahan Dekstrin

Nilai kuat tarik *fruit leather* jambu kristal (*Psidium guajava L.*) dan bit (*Beta vulgaris L.*) dengan variasi konsentrasi dekstrin menunjukkan hasil yang lebih rendah dibandingkan penelitian sebelumnya. Kondisi ini diduga disebabkan oleh perbedaan jenis bahan pengisi yang digunakan, di mana penelitian ini memilih dekstrin sebagai bahan pengikat. Dekstrin memiliki kemampuan mengikat air, berfungsi sebagai bahan pengisi, sekaligus menjaga stabilitas vitamin C agar tidak mengalami kerusakan. Akan tetapi, kemampuan tersebut juga menyebabkan kadar air pada *fruit leather* lebih tinggi, sehingga tekstur yang dihasilkan cenderung kurang kering dan nilai kuat tarik yang diperoleh relatif lebih rendah (Yahya et al., 2022). Nilai kuat tarik dari berbagai proporsi bahan baku dengan penambahan dekstrin pada berbagai konsentrasi bervariasi, peningkatan konsentrasi dekstrin tidak selalu menunjukkan adanya peningkatan nilai kuat tarik *fruit leather*.

3.1.7 Fruit Leather Kiwi dengan Penambahan Xanthan Gum, Guar Gum, dan Pektin

Hasil penelitian (Barman et al., 2021)yang membandingkan tiga jenis hidrokoloid berbeda yaitu xanthan gum, guar gum, dan pektin pada formulasi *fruit leather* buah kiwi dengan masing – masing diformulasikan pada tiga konsentrasi berbeda yaitu 0,2%, 0,5%, dan 1% secara signifikasn menunjukkan berbeda nyata pada taraf signifikansi 0,05. Semakin tinggi konsentrasi hidrokoloid dalam formulasi *fruit leather*, maka nilai kuat tarik *fruit leather*

menunjukkan semakin meningkat pula. $Fruit\ leather\$ yang mengandung 1% pektin menunjukkan kekuatan tarik tertinggi sebesar 0,746 ± 0,012 MPa dan kekuatan tarik terendah terlihat pada kulit buah kontrol. Persentase pemanjangan (elongasi) meningkat secara signifikan dengan peningkatan persentase hidrokoloid. Nilai elongasi terendah yaitu pada $fruit\ leather\$ kontrol yang memiliki nilai 9,96 ± 0,015%. Nilai tertinggi diamati pada pektin 1% dengan 31,55 ± 0,12%. Ada peningkatan nilai kekuatan putus $(rupture\ strength)\$ dengan peningkatan persentase hidrokoloid di dalamnya. $Fruit\ leather\$ tanpa penambahan hidrokoloid mempunyai nilai kekuatan putus terendah sebesar 0,129 ± 0,007 N dibandingkan dengan $fruit\ leather\$ kiwi dengan penambahan hidrokoloid. Secara keseluruhan berdasarkan karakteristik fisikokimia, $fruit\ leather\$ kiwi terbaik dengan penambahan hidrokoloid dengan persentase 0,5% baik dengan xanthan gum, guar gum, maupun pektin.

3.1.8 Fruit Leather Buah Naga dengan Penambahan Gellan Gum, Xanthan Gum, dan Guar Gum

Formulasi fruit leather buah naga baik tanpa penambahan hidrokoloid dan dengan penambahan berbagai jenis hidrokoloid secara signifikan berbeda nyata. Setiap formulasi dengan hidrokoloid berbeda mempunyai nilai hardness, springness, cohesiveness, dan gumminess yang beragam (Tabel 1). Kulit buah naga yang mengandung gellan gum memiliki nilai kekerasan yang lebih rendah (4,431% lebih rendah) dibandingkan dengan sampel tanpa hidrokoloid. Nilai kekerasan yang lebih rendah untuk fruit leather yang mengandung gellan gum menunjukkan ketahanan yang lebih rendah terhadap deformasi; yaitu, mungkin memerlukan lebih sedikit gaya untuk dikompresi di antara gigi molar daripada tiga sampel fruit leather lainnya. Fruit leather buah naga dengan penambahan guar gum sebagai hidrokoloid memiliki nilai kekerasan tertinggi, yaitu 8,426% lebih tinggi daripada nilai kekerasan fruit leather dengan gellan gum. Ini menunjukkan bahwa fruit leather dengan guar gum membutuhkan gaya yang lebih besar untuk dikompresi di antara gigi molar. Tingkat gaya di mana fruit leather yang dikompresi berubah bentuk dan kembali ke ukuran awalnya setelah kompresi parsial menunjukkan kekenyalan. Kekenyalan dikaitkan dengan elastisitas kulit. Fruit leather tanpa penambahan hidrokoloid memiliki nilai kekenyalan tertinggi. Nilai kekenyalan yang tinggi membutuhkan lebih banyak energi pengunyahan di mulut dibandingkan dengan tiga sampel kulit lainnya (Raj & Dash, 2022).

3.1.9 Fruit Leather dari Campuran Pulp Acai, Pisang, Kacang, dan Sirup Jambu Biji dengan Penambahan Agar dan Gellan gum

Kulit campuran dicirikan oleh tekstur yang dapat dikunyah, menunjukkan perbedaan yang signifikan (p < 0,05) untuk parameter kekuatan pecah, sehingga menunjukkan pengaruh jenis hidrokoloid yang digunakan untuk mempersiapkan produk. Hasil Penelitian Santos et al, 2021 dari campuran bahan pulp acai, pisang, kacang, dan sirup jambu biji dengan penambahan dengan penambahan agar dan gellan gum, perlakuan terbaik dengan nilai kuat tarik Temuan ini kemungkinan dapat dikaitkan dengan kemampuan agar untuk menyerap kelembapan karena strukturnya yang bercabang, serta keberadaan unit galaktosa dengan banyak gugus hidroksil yang terikat pada air. Namun, kekerasan kemungkinan bergantung pada jenis, komposisi, dan kondisi pemrosesan matriks makanan (García-García et al., 2019). Menurut (Santos et al., 2021) bahwa jenis hidrokoloid yang digunakan sangat mempengaruhi parameter analisis tekstur. Modulus elastisitas dan perpanjangan putus, kekakuan dan perpanjangan putus dari fruit leather berbahan campuran pulp acai, pisang, kacang, dan sirup jambu biji dengan penambahan dengan penambahan agar dan gellan gum telah dianalisis, rata-rata nilai dari modulus elastisitas dan elongasi ditunjukkan pada Tabel 1. Nilai elastisitas dan nilai elongasi paling tinggi yaitu campuran bahan dengan penambahan agar: gellan gum (0,75%:0,25%), namun secara keseluruhan ditinjau dari parameter lain seperti kekuatan keretakan dengan nilai terkecil sebesar 2,42 N yaitu dengan formulasi campuran bahan penambahan hidrokoloid agar 1%. Dari keseluruhan parameter yang diamati selain tekstur, perlakuan terbaik dari campuran pulp acai, pisang, kacang, dan sirup jambu biji dengan penambahan dengan penambahan agar dan gellan gum yaitu dengan penambahan hidrokoloid agar 1%. Meskipun nilai kadar air rendah ditemukan untuk produk, ketersediaan air masih mungkin memengaruhi pembentukan jaringan protein dengan fleksibilitas yang lebih besar dan, akibatnya, meningkatkan ukuran matriks pangan dan, dengan demikian, menghasilkan produk yang lebih sulit dipatahkan.

Tabel 1. Karakteristik Tekstur *Fruit Leather* dari Berbagai Jenis Buah dan Jenis Koloid Ditinjau dari Analisis Fisik dan Secara Sensori

No.	Buah	Hidrokoloid		- Niloi Duofil	Clean Taleston	Doulalman	
		Jenis	Konsentrasi (%)	- Nilai Profil Tektur	Skor Tekstur secara Sensori	Perlakuan Terbaik	Referensi
1.	Nangka	Tepung agar	0	a. Hardness = 53,09 kgf b. Cohesiveness = 0,04 c. Springiness = 9,62 mm d. Gumminess =	4,07	Tepung agar 0,5%	(Kurniarianti et al., 2024)

	Buah	Hidrokoloid		- Nilai Profil	Skor Tekstur	Perlakuan	
No.		Jenis	Konsentrasi (%)	Tektur	secara Sensori	Terbaik	Referensi
			0,5 – 2,0	12,46 d. Adhesiveness = 0,10 a. Hardness = 60,18 kgf b. Cohesiveness = 0,09	3,53 – 4,43		
2.	Kiwi	Kontrol	0	c. Springiness = 8,90 mm d. Gumminess = 19,63 kgf d. Adhesiveness = 0,09 kgf.mm a. Rupture strength = 0,129 N b. Elongasi = 9,96 c. Chewiness =	5,1	- Xanthan gum 0,5% - Guar gum 0,5% - Pektin 0,5%	(Barman et al., 2021)
		Xanthan gum	0,2 – 1,0	24,38 N mm d. <i>Adhesiveness</i> = 1,75 Ns e. Kuat tarik = 0,198 a. <i>Rupture strength</i> = 0,296 - 0,961 N b. Elongasi = 15,03	5,8 - 6,8		
				- 20,22% c. Chewiness = 60,51 - 69,94 N mm d. Adhesiveness = 1,12 - 0,56 Ns e. Kuat tarik = 0,233 - 0,291			
		Guar gum	0,2 – 1,0	a. Rupture strength = 0,533 -2,053 N b. Elongasi = 14,09 - 28,72% c. Chewiness = 63,17 - 70,54 N mm d. Adhesiveness = 1,50 - 0,37 Ns e. Kuat tarik = 0,547 - 0,681	6,5 – 7,2		
		Pektin	0,2 – 1,0	a. Rupture strength = 0,383 -2,416 N b. Elongasi = 15,91 - 31,55% c. Chewiness = 49,05 - 66,78 N mm d. Adhesiveness = 0,57 - 1,25 Ns e. Kuat tarik = 0,306 - 0,746	6,1 – 7,1	_	

No.	Buah	Hidrokoloid		- Nilai Profil	Skor Tekstur	Perlakuan	
		Jenis	Konsentrasi (%)	Tektur	secara Sensori	Terbaik	Referensi
3.	Kenitu	CMC Karagenan	0,1 - 0,5	Kuat tarik = 9,33 – 20,65 Kpa Kuat tarik = 14,40	10%; 13,34%; 6,67% 16,67%;	Karagenan 0,3%	(Herlina et al., 2020)
4.	Jambu air camplong putih	CMC	0,5 – 2,0	- 24,25 KPa Kuat tarik = 0,210 - 0,375 MPa	46,66%; 30% 26%; 33%; 38%	CMC 1%	(Mardiyana et al., 2022)
5.	Apel manalagi	Gum arab	0,9-1,5	Kuat tarik = 11,70 - 23,18	-	Gum arab 1,5%	(Putri et al., 2022)
6.	Jambu kristal dan Bit (10;	Dekstrin	1,0 – 2,0	Kuat tarik = 0,13 – 0,13	2,55 – 2,91	Ekstrak bit 10% dan dekstrin 2%	(Yahya et al., 2022)
7.	15; 20) Belimbing dan Jambu Biji Merah	Gum arab	0,5 – 2,5%	Kuat tarik = 294,12 - 533,75 gf	2,6±0,10 – 3,7±0,03	Gum arab 0,5%	(Fachriah & Rahmawati, 2022)
8.	Jambu Biji dan Pisang	Kappa Karagenan Gum Arab	0,3% 0,3%	Kuat tarik = 2,34 – 3,72 N Kuat tarik = 1,63 – 1,84 N	-	Kappa Karagenan 0,3%	(Kurniadi et al., 2022)
9.	Acai pulp; Banana; Peanut; Guava	Agar dan Gellan gum	(0,5%: 0,5%; 0,75%: 0,25%; 1%:0%)	Elastisitas: 4,2 – 5,2 kg.cm ⁻² Elongasi: 0,2 – 1,2%	-	Agar 1%	(Santos et al., 2021)
10.	syrup Buah Naga	Gellan gum, xanthan gum, guar gum	0	 a. Hardness 60,156 N b. Springness 0,932 cm c. Cohesiveness 0,767 	Tanpa hidrokoloid = 0,78	Xanthan gum 2g/100 g	(Raj & Dash, 2022)
			2g/100 g	d. Gumminess 46,140 a. Hardness 51,483 62,076 N b. Springness 0,917 - 0,851 cm c. Cohesiveness 0,624 - 0,711 d. Gumminess 32,125 44,136 N	 a. Gellan gum = 0,70 b. Xanthan gum = 0,83 c. Guar gum = 0,80 		

3.2 Pengaruh Berbagai Koloid Terhadap Tekstur Secara Organoleptik

Karakteristik tekstur yang dimaksud dalam analisis sensori pada *literature review* ini adalah tekstur yang dirasakan saat *fruit leather* digigit dan dikunyah. Tekstur tersebut menjadi salah satu aspek penting dalam penilaian mutu produk. Tekstur yang diharapkan dari produk *fruit leather* yaitu plastis.

3.2.1 Fruit Leather Nangka dengan Penambahan Tepung Agar

Penambahan agar pada kulit buah nangka dapat meningkatkan nilai tekstur. Penggunaan tepung agar 0,5% dapat memperbaiki tekstur kulit buah nangka, dan kulit buah nangka dengan penambahan agar 0,5% lebih disukai konsumen dibandingkan kulit buah nangka dengan penambahan tepung agar pada konsentrasi di atas 0,5%(Kurniarianti et al., 2024). Penambahan tepung agar dengan semakin besar konsentrasinya menunjukkan semakin kecil skor kesukaan tekstur *fruit leather* nangka.

3.2.2 Fruit Leather Belimbing-Jambu Air Merah dengan Penambahan Gum Arab

Tingkat kesukaan *fruit leather* belimbing-jambu air merah pada parameter tekstur secara signifikan berbeda nyata dengan penambahan gum arab konsentrasi 0%, 0,5%, 1%, 2%, dan 2,5%. Pada *fruit leather* belimbing-jambu air merah dengan penambahan gum arab konsentrasi 2% adalah yang paling kurang disukai oleh panelis. Sedangkan tingkat kesukaan tertinggi parameter tekstur adalah *fruit leather* belimbing-jambu air merah dengan penambahan gum arab konsentrasi 1%. Semakin tinggi nilai kuat tarik *fruit leather* belimbing-jambu air merah maka tingkat kesukaan pada parameter tekstur cenderung semakin menurun(Fachriah & Rahmawati, 2022). Persentase nilai tertinggi kesukaan panelis terdapat pada perlakuan dengan penambahan gum arab sebesar 1%. Rata-rata secara keseluruhan terjadi peningkatan nilai kesukaan tekstur hingga konsentrasi gum arab 1% lalu nilai kesukaan tekstur menurun dengan bertambahnya konsentrasi gum arab.

3.2.3 Fruit Leather Jambu Biji dan Pisang dengan Penambahan Kappa-Karagenan dan Gum Arab

Formulasi jambu biji dan pisang dibuat dengan rasio yang bervariasi, yaitu 30:70, 40:60, dan 50:50, dengan penambahan hidrokoloid yang sama sebesar 0,3%. Tekstur kulit buah dianggap netral hingga baik. Jika dibandingkan dengan gum Arab, hidrokoloid kappa-karagenan, di sisi lain, menghasilkan penerimaan yang jauh lebih tinggi pada semua rasio bubur jambu biji-pisang [F1 (30:70 dengan kappa-karagenan), F3 (40:60 dengan kappa-karagenan), dan F6 (50:50 dengan gum arab)]. Hasil ini konsisten dengan hasil yang diperoleh untuk kekuatan tarik. Dalam semua formulasi ini, penambahan 0,3% hidrokoloid kappa-karagenan meningkatkan kekuatan tarik kulit buah jambu biji pisang. Dengan demikian, kekuatan tarik yang diamati dalam penelitian ini dapat dikaitkan dengan tekstur kulit buah yang seperti plastik. Saat digigit dan dikunyah, kulit buah harus memiliki tekstur yang lembut seperti plastik, yang menunjukkan bahwa kulit tersebut lembut dan memberikan sensasi mengunyah. Produk kulit buah harus memiliki tekstur plastik agar tidak patah saat ditarik. Kulit buah harus lembut dan

kenyal setelah digigit dan dikunyah, sehingga dapat digulung di dalam mulut (Kurniadi et al., 2022).

3.2.4 Fruit Leather Kenitu dengan Penambahan CMC dan Karagenan

Perlakuan *fruit leather* dengan variasi jenis dan konsentrasi bahan pengikat diketahui berpengaruh nyata terhadap tingkat kesukaan tekstur panelis. Hal tersebut dikarenakan *fruit leather* kenitu yang dihasilkan menunjukkan tekstur yang relatif liat dan kompak. Tingkat kesukaan panelis terhadap tekstur tinggi diperoleh oleh perlakuan A2B2 dengan presentase 73,34%, dimana kondisi tekstur yang tidak terlalu liat namun juga tidakterlalu lunak. Karakteristik tersebut dipengaruhi oleh kadar air, dimna peningkatan konsentrasi hidrokoloid menyebabkan tekstur menjadi lebih lunak dan kompak akibat semakin banyaknya air yang terikat (Herlina et al., 2020). Penambahan CMC dengan konsentrasi yang lebih tinggi cenderung menurunkan tingkat kesukaan panelis terhadap tekstur, sedangkan peningkatan konsentrasi karagenan justru meningkatkan kesuaan terhadap tekstur *fruit leather*.

3.2.5 Fruit leather Jambu Air Camplong Putih dengan Penambahan CMC

Berdasarkan distribusi persentase distribusi penilaian atribut tekstur *fruit leather* jambu air camplong putih, diperoleh sampel dengan kode 479 (perlakuan penambahan CMC 1,5%) bahwa pilihan terbanyak dari panelis, dengan skor hedonik 6 (agak suka) sebesar 38% dari total panelis. Pilihan berikutnya adalah sampel dengan kode 869 (perlakuan CMC 1%) yang memeperoleh skor hedonik 7 (suka) sebesar 33%. Tekstur *fruit leather* jambu air camplong putih yang terbentuk dipengaruhi adanya penambahan CMC. Semakin besar konsentrasi CMC yang ditambahkan, menunjukkan tingkat keelastisannya semakin tinggi dengan indikasi nilai tensile strength (daya tarik) yang juga semakin tinggi seiring dengan penambahan CMC (Mardiyana et al., 2022).

3.2.6 Fruit Leather Jambu Kristal dan Ekstrak Bit dengan Penambahan Dekstrin

Panelis memberikan skor tertinggi pada *fruit leather* dengan bahan dasar jambu kristal (*Psidium guajava* L.)—bit (*Beta vulgaris* L.) dengan penambahan dekstrin pada formulasi ekstrak bit 15% dan dekstrin 1,5% (3,30). Sementara itu, formulasi dengan ekstrak bit 10% dan dekstrin 1% menunjukkan nilai elastisitas terendah (2,55). Peningkatan elastisitas tersebut diduga berhubungan erat dengan kadar air pada *fruit leather* jambu kristal (*Psidium guajava* L.)—bit (*Beta vulgaris* L.) yang cenderung meningkat seiring dengan penambahan konsentrasi dekstrin. Kadar air pada produk *fruit leather* jambu kristal (*Psidium guajava* L.)—bit (*Beta vulgaris* L.) dengan variasi konsentrasi dekstrin menunjukkan adanya kenaikan yang signifikan seiring dengan bertambahnya konsentrasi ekstrak bit (Yahya et al., 2022).

3.2.7 Fruit Leather Kiwi dengan Penambahan Xanthan Gum, Guar Gum, dan Pektin

Hasil uji sensori parameter tekstur pada produk fruit leather kiwi dengan penambahan hidrokoloid berbeda yaitu xanthan gum, guar gum, dan pektin pada tiga konsentrasi (0,2%, 0,5%, dan 1%). Hasil pengujian sensori dari parameter tekstur fruit leather kiwi tanpa penambahan hidrokoloid dan dengan penambahan hidrokoloid yang bervariasi dengan konsentrasi yang bervariasi tersebut menunjukkan secara signifikan berbeda ($p \le 0.05$). Nilai sensori tertinggi untuk tekstur tercatat pada fruit leather kiwi yang dibuat menggunakan 0,5% guar gum yang memiliki nilai $8,1 \pm 0,3$; sedangkan nilai terendah pada fruit leather kontrol (tanpa penambahan hidrokoloid) yang memiliki nilai 5,1±0,3. Tekstur guar gum dan buah pektin lebih disukai oleh panelis dibandingkan dengan kontrol dan fruit leather kiwi dengan penambahan xantan gum. Fruit leather kiwi dengan 0,5% guar gum memperoleh skor tertinggi sekitar 8,4±0,3 untuk penerimaan keseluruhan. Skor rata-rata terendah untuk penerimaan keseluruhan diperoleh oleh fruit leather kiwi kontrol yang memiliki skor 6,0±0,4. Dengan demikian fruit leather kiwi yang dibuat dengan guar gum dan pektin menunjukkan skor sensori yang baik untuk tekstur, rasa, dan warna daripada xanthan gum dan fruit leather kiwi kontrol. Secara keseluruhan fruit leather dengan penambahan hidrokoloid yang berbeda-beda ini, penambahan hidrokoloid dengan konsentrasi 0,5% menunjukkan hasil yang lebih unggul dibandingkan dengan 0,2% dan 1% untuk ketiga jenis hidrokoloid (Barman et al., 2021). Semakin besar konsentrasi hidrokoloid baik dari xanthan gum, guar gum, maupun pektin maka semakin besar pula nilai kuat tarik dari fruit leather yang dihasilkan. Secara keseluruhan dengan penambahan hidrokoloid dari xanthan gum, guar gum, dan pektin, skor terkstur mengalami peningkatan seiring dengan peningkatan konsentrasi hidrokoloid yang digunakan.

3.2.8 Fruit Leather Buah Naga dengan Penambahan Gellan Gum, Xanthan Gum, dan Guar Gum

Analisis parameter tekstur secara sensori dilakukan pada *fruit leather* buah naga tanpa dan dengan penambahan gellan gum, xanthan gum, serta guar gum. Penilaian dilakukan berdasarkan nilai similaritas uji sensori. Berdasarkan Tabel 1 hasil penelitian (Raj & Dash, 2022), *fruit leather* buah naga dengan penambahan xanthan gum memiliki nilai tertinggi yaitu sebesar 0,83.

4. PENUTUP

Simpulan dan Saran

Hidrokoloid memiliki peran penting dalam pembentukan gel. Kemampuan hidrokoloid dalam memerangkap air dan membentuk gel sangat berperan dalam menghasilkan tekstur plastis dari produk fruit leather. Tekstur fruit leather yang diharapkan adalah memiliki tekstur plastis, dan tidak mudah sobek. Penambahan berbagai jenishidrokoloid dengan konsentrasi yang bervariasi secara umum menunjukkan semakin besar konsentrasi hidrokoloid yang digunakan maka nilai tekstur fruit leather (ditinjau dari nilai kuat tarik, hardness, elongasi, rupture strength, springness, cohesiveness, gumminess) cenderung semakin besar pula. Semakin tinggi konsentrasi hidrokoloid yang ditambahkan pada fruit leather maka akan meningkatkan kekompakan matriks gel sehingga dapat mengurangi struktur berongga yang dapat menurunkan kekenyalan dan meningkatkan kekerasan. Berbeda dengan tekstur yang ditinjau secara sensori, dengan semakin bertambahnya konsentrasi hidrokoloid melebihi konsentrasi optimumnya yang ditambahkan nilai kesukaan panelis terhadap tekstur semakin menurun. Setiap hidrokoloid mempunyai konsentrasi optimum yang dapat menghasilkan fruit leather dengan karakteristik fisikokimia terbaik dan juga disukai panelis. Proporsi konsentrasi hidrokoloid yang menjadi perlakuan terbaik pada setiap pengolahan fruit leather umumnya dengan konsentrasi hidrokoloid sedang dari konsentrasi yang digunakan. Saran untuk penelitian selanjutnya yaitu dari hasil kajian berbagai jenis hidrokoloid ini dapat digunakan untuk pengembangan produk fruit leather dari berbagai jenis buah lokal lain dan dengan pemilihan jenis hidrokoloid yang sesuai dengan karakteristik, penentuan konsentrasi hidrokoloid yang optimum, studi stabilitas dan umur simpan produk fruit leather yang dikaitkan dengan interaksi fisikokimia, selain itu juga dapat dijadikan sebagai dasar penelitian evaluasi sensori yang lebih komprehensif dan spesifik.

DAFTAR PUSTAKA

Barman, M., Das, A. B., & Badwaik, L. S. (2021). Effect of xanthan gum, guar gum, and pectin on physicochemical, color, textural, sensory, and drying characteristics of kiwi fruit leather. *Journal of Food Processing and Preservation*, 45(5). https://doi.org/10.1111/jfpp.15478

Fachriah, K., & Rahmawati, R. (2022). Physicochemical And Sensory Characteristic Of Starfruit-Red Guava Fruit Leather As Affected By The Addition Of Arabic Gum. *Jurnal Teknologi*, 84(1), 11–19. https://doi.org/10.11113/jurnalteknologi.v84.16642

- Forestryana, D., Fahmi, M. S., Putri, A. N., Tinggi, S., Kesehatan, I., Lestari Banjarbaru, B., & Selatan, K. (2020). Pengaruh Jenis dan Konsentrasi Gelling Agent pada Karakteristik Formula Gel Antiseptik Ekstrak Etanol 70% Kulit Buah Pisang Ambon. *Jurnal Ilmu Kefarmasian*, 1(2).
- García-García, A. B., Ochoa-Martínez, L. A., Lara-Ceniceros, T. E., Rutiaga-Quiñones, O. M., Rosas-Flores, W., & González-Herrera, S. M. (2019). Changes in the microstructural, textural, thermal and sensory properties of apple leathers containing added agavins and inulin. *Food Chemistry*, 301. https://doi.org/10.1016/j.foodchem.2019.03.143
- Herlina, H., Belgis, M., & Wirantika, L. (2020). Karakteristik Fisikokimia Dan Organoleptik Fruit Leather Kenitu (*Chrysophyllum cainito* L.) Dengan Penambahan Cmc Dan Karagenan. *Jurnal Agroteknologi*, 14, 103–114.
- Kurniadi, M., Parnanto, N. H. R., Saputri, M. W., Sari, A. M., Indrianingsih, A. W., Herawati, E. R. N., Ariani, D., Juligani, B., Kusumaningrum, A., & Frediansyah, A. (2022). The effect of kappa-carrageenan and gum Arabic on the production of guava-banana fruit leather. *Journal of Food Science and Technology*, 59(11), 4415–4426. https://doi.org/10.1007/s13197-022-05521-1
- Kurniarianti, Y., Purnamayati, L., Anggo, A. D., & Arifin, M. H. (2024). Characteristics of Fruit Leather Made from Jackfruit (Artocarpus heterophyllus) with the Addition of Gracilaria sp. Agar Flour. *Journal of Advances in Food Science & Technology*, 11(1), 37–44. https://doi.org/10.56557/jafsat/2024/v11i18601
- Mardiyana, M., Handayani, M., & Fadillah, F. (2022). Pengaruh Penambahan Hidrokoloid CMC terhadap Karakteristik Fruit Leather Jambu Air Camplong Putih (Syzygium samarangense). *TEKNOTAN*, 16(3), 161. https://doi.org/10.24198/jt.vol16n3.5
- Peters, M. D. J., Marnie, C., Colquhoun, H., Garritty, C. M., Hempel, S., Horsley, T., Langlois, E. V., Lillie, E., O'Brien, K. K., Tunçalp, Özge, Wilson, M. G., Zarin, W., & Tricco, A. C. (2021). Scoping reviews: reinforcing and advancing the methodology and application. In *Systematic Reviews* (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13643-021-01821-3
- Raj, G. B., & Dash, K. K. (2022). Development of Hydrocolloids Incorporated Dragon Fruit Leather by conductive hydro drying: Characterization and Sensory Evaluation. *Food Hydrocolloids for Health*, 2. https://doi.org/10.1016/j.fhfh.2022.100086
- Santos, K. L., Machado de Sousa, P. H., Rangel Moreira Cavalcanti-Mata, M. E., & Barros de Vasconcelos, L. (2021). Mixed leather of açaí, banana, peanut, and guarana syrup: the effect of agar and gellan gum use on quality attributes. *International Journal of Gastronomy and Food Science*, 26. https://doi.org/10.1016/j.ijgfs.2021.100407
- Yahya, M. H., Wulandari, Y. W., & Widanti, Y. A. (2022). Formulasi Fruit Leather Jambu Kristal (Psidium guajava L.) Bit (Beta vulgaris L) dengan Variasi Konsentrasi Dekstrin. *Jurnanl Teknologi dan Industri Pangan Unisri*, 7(1), 30.